Eat Less- Live Long? Not so FAST..

Got it- to FAST? ūüėÄ
The past week has been a treat in terms of great talks on campus. At ASU we are super-lucky to have the Center for Evolution & Medicine, which holds weekly talks by amazing speakers.

First
February 18- Arizona State University

When I saw that the upcoming seminar was related to diet and eating..or more specifically¬†NOT¬†eating or “dietary restriction”, I of course RSVPd in a heartbeat.

“Eat breakfast yourself, share dinner with a friend, give the supper to your enemy”- Russian Proverb

I’ve been in fact fascinated with¬†caloric restriction for¬†years now Screen Shot 2016-02-20 at 1.30.46 PM.png(I wrote a whole¬†research paper on it in the first year of my master’s degree). You might have heard of intermittent fasting (e.g. popular in the CrossFit world), or the CR¬†Society (¬†http://www.crsociety.org/ )- all are related to¬†the concept that restricting food intake results in health benefits (from extending life to preventing and reversing disease).

I’m sure you can Google caloric restriction and find a bunch of information on its reported benefits..you would see this chart at the CR society website- the lifespan of calorie-restricted (CR) mice vs non-CR mice. You can see that those whose food intake was restricted by more & more % lived longer.¬†Screen Shot 2016-02-20 at 1.24.28 PM.pngWhy do many animals (and perhaps¬†humans) appear to be so well-adapted to eating less? The traditional interpretation of this CR phenomenon is that¬†the¬†dietary restriction effect “has¬†evolved as a way to enhance survival & preserve reproduction during periods of naturally occurring food shortage”. In other words- being adapted to do well on restricted food intake during rough times would have helped our ancestors survive them & stay healthy to have kids later when the food situation improves.

The traditional interpretation of this CR phenomenon is that¬†the¬†dietary restriction effect “has¬†evolved as a way to enhance survival & preserve reproduction during periods of naturally occurring food shortage”.

Experimental evidence with animals, however…supports a different hypothesis- the one Dr. Austad (Professor & Chair of the Department of Biology at the University of Alabama)¬†presented to us last week.¬†Again, I wouldn’t be able to cover everything he discussed during the seminar, but I do want to highlight a couple of main points!

I. First, even though the first book on dietary restriction (DR) HowWorks.jpgdates back to the late 16th century, we still do not know the mechanism behind why DR seems to extend life and vigor in animals + delay disease such as cancers. METABOLISM was the original suspect, as metabolic rate goes down with fasting.. however, metabolic rate drops initially yet gradually goes back UP (takes 6-8 weeks to happen).. Since DR changes an unbelievable amount of physiological parameters (see screenshot ->) it is very hard to determine its mechanism.

II. Second, while many sources cite mice experiments showing life extension with caloric restriction.. those experiments are done with lab mice. When DR studies are done with wild mice, DR has no effect on longevity. WHAAAT!! I’ve never heard this before- in fact i was under the impression that CR/DR extends life in animals, period. Well, NO STUDY has ever found that DR extends life or improves health in nature (or even “nature-like” conditions). Mice in the wild actually do not have enough fat stores to reduce feeding except very briefly (wild mice has about 4% fat while a regular lab mice has 15%; also lab mice do not reproduce). In fact, mice in nature simply do not live long enough for the survival benefits of DR to be important. Another challenge to the original hypothesis that adaptation to dietary restriction¬†enhances survival, is that DR increases¬†mortality from some infections. Lastly, DR increases cold sensitivity (and cold is a major source of death in wild mice) and slows down wound healing.

Sounds like animals in the wild would not benefit from adaptation to dietary restriction… yet¬†why¬†is the positive DR effect observed in so many studies so common?

III. Well, even though wild mice do not live longer with restricted diets, DR still results in cancer protection for them. But even more importantly, DR has been found to protect against acute effects of many many toxins! Dr. Austad talks about this discovery in the following way:

¬†..¬†if animals can not afford to wait to reproduce..and they have to do it even when food conditions are poor, what they will do is broaden their diet. This means they might be ingesting a lot of toxins they are not normally exposed to (foods infected with fungi, new seed types that are well defended by the chemicals they wouldn’t normally encounter). So the hypothesis is that DR acutely induces broad defense mechanisms from a broad range of toxins

Toxicology studies have shown that mice that are calorically restricted survive a wide range of toxins. DR also acts as an acute (vs. chronic) protectant against other problems (see slide below). Renal ischaemia reperfusion injury (IRI) is a common cause of acute kidney injury and we can see that while ad libitum mice are dying steeply by day 7, those on DR of various proportions survive (30% DR is only 70% of normal food intake; ad libitum stands for eating as much as one wants). This is quite impressive!!!

Screen Shot 2016-02-20 at 2.36.43 PM.png

These acute benefits of DR have very important implications. We can think about these effects actually protecting the body against the toxins it itself produces (like free radicals).. it also has clinically relevant advantages- e.g. patients on very strong drug cocktails fasting to avoid harsh side-effects. This suggests that the protective effects of DR could have clinical relevance unrelated to chronic benefits like life extension.

The new hypothesis explaining the evolutionary advantage of this paradoxical effect is that dietary restriction arose as a defense against novel exposure to toxins during food shortage.

So in conclusion.. we saw evidence suggesting that dietary restriction would NOT enhance survival in nature. Yet research has shown that DR increases health and life in a diversity of species. The new hypothesis explaining the evolutionary advantage of this paradoxical effect is that dietary restriction arose as a defense against novel exposure to toxins during food shortage.

Screen Shot 2016-02-20 at 2.54.15 PM.png

My conclusion? I’m still excited about this topic- more than ever before!!!¬†There is a lot of work done now on the timing of food intake as well (not just restricting the amount, but restricting the timing of eating and human health) and I can’t wait to post more about this (after I collect some necessary data though :). ¬†Watch out for early May as I’ll be sharing some more info!

Advertisements

Meat, Plants, and Humans..

This week on ASU campus I managed to attend a fascinating talk: Reconsidering the Role of Plant Foods in Hominin Diets by Dr. Chelsea Leonard. Screen Shot 2016-02-17 at 11.41.44 AM

It was a job talk for the Evolutionary Anthropology department here at ASU and Dr. Leonard is an evolutionary ecologist interested in “human foraging decisions & diet reconstruction”(so- her work would help to clarify¬†what humans ate in the past!)¬†working with Twe populations in Namibia (southwest Africa).

Why does Dr. Leonard study the role of plants? Since shifting towards more meat in diets of early humans has been¬†suggested to be crucial for the unique adaptations in our genus (e.g. large brains), animal foods¬†appear¬†to be very Screen Shot 2016-02-17 at 12.00.04 PMimportant. There is indeed a strong case for meat in a human diet- in comparison to chimpanzees who are mostly herbivorous (eat plants), the human gut has opposite proportions- our small intestine is much longer, while the colon is a lot shorter. The colon is where fiber fermentation occurs- something crucial if you are eating lots of plant foods (and wild plant foods are very high fiber!). What Dr. Leonard suggests, though, is that meat’s importance in human diets may be quite¬†overstated¬†(especially in meat-heavy “paleo” diets popular now).

The people she studies- Twe- are “forager-horticulturalists”; while the Namibian government has been providing maize for them (this started very recently, in the last 7 yrs or so), they mostly forage for wild foods and have very low intake of animal products. Apparently, historically this population hunted large game and had a higher meat intake.. but the area is very poor in large animals now (and has been this way for ~200 yrs).

While I wont’ be able to describe everything Dr. Leonard discussed, I found the following fascinating.. Based on her observations and interviews with the Twe, she constructed and analyzed a hypothetical (yet realistic) diet for this region.¬†Since Twe seem to be doing just fine health-wise with an extremely low animal food intake (there might be some birds, insects, rodents eaten from time to time), she wanted to test if their meatless diet truly meet basic nutritional requirements. FullSizeRender 9

Based on the plants the Twe regularly eat, her analysis showed that such meatless diet can realistically provide enough protein (it can reach minimum levels of essential amino acids our body can not produce without foods that contain them), it can also provide enough fat (while most plant sources were extremely low in fat, the grass seeds often eaten are rather high in it). The main issue with this meatless diet was calories. Getting enough calories to survive would be improbable : while the hypothetical food intake reaches 1774 calories a day.. only 772 of them are metabolized. What this means is that a lot of these calories are not available to the human body- since humans can not ferment fibers very efficiently, a lot of this rough wild plant fiber is indigestible and does not provide our body with energy.

The main issue with this meatless diet was calories.

Since foraging for wild plants ¬†is very labor intensive¬†(and this does not really mean standing around picking berries, but e.g. digging up roots that are about 1 meter (~40 inches) into the ground, or grinding grass seeds and cooking them into porridge), there isn’t enough time in a day to get enough digestible calories from foraging. So animal products are more efficient and provide a concentrated mix of not only essential nutrients, but fat, protein, and calories. While the speaker couldn’t quite estimate the % of calories coming from small game (the birds, insects, etc.), it was very small but still was a part of this population’s diet¬†[note:¬†any time honey was available, it was eaten in large amounts and rather adored, apparently!]. Thus,¬†while a ¬†vegetarian diet can be maintained¬†in our modern world with plentiful food supply (and supplementation), it was not possible for non-industrialized populations.

humans are highly adaptable as we span huge geographical areas, and thus no single “diet” “made us human”

We know humans are highly adaptable as we span huge geographical areas, and thus no single “diet” “made us human” (thus, there is no one Paleo Diet). Yet plants are extremely important in our history- we see that they can sustain populations in good health to a very large degree. One issue with studying the role of plants in human diets is that they do not last well archeologically (e.g. it’s much easier to find evidence of large game being consumed, because their remains last well).

while a  vegetarian diet can be maintained in our modern world with plentiful food supply (and supplementation), it was not possible for non-industrialized populations.

Overall, this was a really great talk! It also reminded me of a paper I read on the significance of plant foods in human evolution, which I talked about HERE.

[note: if you are an evolutionary anthropologist sand have any edits/clarifications to my post, please comment! I am not an evolutionary anthropologist :)]